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1 WELCOME TO VECTOR SPACE

Part I

Basic Notions
Linear algebra is about structures called vector spaces whose elements, called vectors, may
be added and scaled; and about maps between them, called linear transformations, that
preserve their linear structure. In this sense, objects as different as numbers, pointed arrows
in space, and even functions fall under the subject’s purview.

1 Welcome to Vector Space

1.1 The Rules of the Game

Definition 1.1. A field F is a set of objects called scalars that behave in a sufficiently
number-like manner. In particular, for all x, y, z ∈ F , the field must support:

(a) Associative-commutative binary operations + and ·;
(b) Additive and multiplicative identity elements 0 6= 1;
(c) Unique additive and multiplicative inverses −x and x−1;
(d) The distributive property: x(y + z) = xy + xz.

Example 1.2. Q, R, and C are all fields. Fields can also be finite, e.g. F2 := {0, 1}. While
we will usually take F = C, the real numbers provide the best intuition for the term “scalar.”

Definition 1.3. A vector space V over a field F is a set whose elements, called vectors, can
be added and scaled by field elements. Thus every vector space is equipped with:

(a) Associative-commutative addition: u,v ∈ V =⇒ u + v ∈ V ;
(b) A unique zero vector 0 ∈ V satisfying v + 0 = v;
(c) Unique additive inverses −v ∈ V such that v + (−v) = 0;
(d) Associative-distributive scalar multiplication over F , with 1v = v.

A subspace is a nonempty subset W ⊂ V that inherits its structure from V , i.e. it is closed
under the addition and scalar multiplication in V , and contains 0.

Example 1.4. Ordered n-tuples (lists) of numbers, directed arrows in space, m×n matrices,
and functions can all be added together and scaled by real (or complex) numbers in obvious
ways, so they all form vector spaces. Moreover, any field forms a vector space over itself, so
we can view C as a complex vector space as well as a field of scalars.

The most obvious move, after making it possible to add and scale vectors arbitrarily, is
to do it. The job of scaling and summing vectors is accomplished by linear combinations:

Definition 1.5. A linear combination of a set of vectors β := {v1, ...,vn} ∈ V is a new
vector v ∈ V , formed by scaling the original vectors by given coefficients c1, ..., cn ∈ F , and
then adding together the scaled vectors:

v :=
n∑
i=1

civi ∈ V. (1.1)
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1.2 Basis and Dimension 1 WELCOME TO VECTOR SPACE

Linear combination is “the only game in town,” insofar as it gives the only way to generate
new vectors from old ones. One might ponder two natural questions: (1) what might the set
of all possible linear combinations of a given set look like? and conversely, (2) is it possible
to write an arbitrary v ∈ V as a linear combination of some minimal set of vectors?

1.2 Basis and Dimension

Definition 1.6. The linear span of a set β := {v1, ...,vn} ⊂ V is the set of all possible
linear combinations of the vectors in β. It follows (check it!) span(β) is a subspace of V .

Definition 1.7. A set β := {v1, ...,vn} ⊂ V is linearly independent if no vi ∈ β can be
written as a (nonzero) linear combination of the others. Intuitively, removing a vector from
an independent set will reduce the span of the remaining set. Conversely, a set is dependent
if it is not independent, i.e. if it contains “redundant” vectors.

The span of β describes the subspace W ⊂ V of every vector that can be built from β;
meanwhile, if β is independent, then it has minimal size among all sets that span W . If an
independent set happens to span the entire vector space, then (!) any vector v ∈ V can be
written as a unique linear combination of that set.

Definition 1.8. A basis β := {v1, ...,vn} ⊂ V for V is a linearly independent set of vectors
with span(β) = V : that is, a maximally spanning, minimally redundant set. The dimension
of V , denoted n = dimV , is the number of vectors in any basis for V .

Henceforth, we will consider only finite-dimensional spaces. A finite basis allows us to
decompose every v ∈ V as a linear combination

v =
n∑
i=1

civi; vi ∈ β, ci ∈ F. (1.2)

To specify an arbitrary vector, we need to (1) fix a basis β and (2) record the list of coefficients
ci ∈ F , known as the coordinates of v. There is no “canonical” choice of basis for V , so a
vector’s coordinates are only meaningful once a basis is chosen. We will soon learn how a
vector’s coordinates transform when the basis is changed.

Example 1.9. Nevertheless, by regarding F n as a vector space over F , we can always
represent a vector v ∈ V by its coordinates c = (c1, ..., cn) ∈ F n, as follows. F n has a
standard basis {e1, ..., en}, where ei := (0, ..., 0, 1, 0, ..., 0) has a 1 in the ith spot and zeros
everywhere else. We see that c decomposes along the standard basis as

c =
n∑
i=1

ciei. (1.3)

This gives a correspondence between V and F n, whereby v is represented by c and each vi
by ei. This re-emphasizes one of the key ideas: to understand the behavior of a vector, it
suffices to fix a basis and keep track of its coordinates.
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2 LINEAR TRANSFORMATIONS

2 Linear Transformations

We now introduce a special class of functions between vector spaces that “preserve linear
structure,” i.e. take sums to sums and scalar multiples to scalar multiples. Throughout, let
V and W be vector spaces over F of dimensions n and m, respectively.

2.1 Definition and Properties

Definition 2.1. A map T : V → W is called a linear transformation (also called a linear
map) if for all u, v ∈ V and for all c ∈ F ,

T (u + v) = T (u) + T (v); T (cv) = cT (v). (2.1)

Note that T (0) = 0. By convention, we omit parentheses and write Tv in place of T (v).

Example 2.2. The zero and identity transformations 0 and id are always linear; so is
the “stretching” map v 7→ cv for any c ∈ F . Matrices (below) are linear maps, as are
differentiation and integration from calculus. On which spaces do these operators act?

Linear maps preserve sums and multiples: forming a linear combination of some vi in
V and then applying T is equivalent to applying T to the vi and then forming the same
linear combination of the T (vi) in W . Since we can decompose every vector along a basis
β, specifying the values of T on the vectors in β determines its action action on any v ∈ V :

T (v) = T

 n∑
i=1

civi

 =
n∑
i=1

ciT (vi). (2.2)

The notion that a linear map is determined by where it sends a basis for the space can
be more precisely stated as the Construction Principle:

Theorem 2.3 (Construction). If V has a basis β := {v1, ...,vn} and w1, ...,wn ∈ W are
arbitrary, then there exists a unique linear map T : V → W such that T (vi) = wi.

Linear maps from V to W can themselves be added and scaled (pointwise) to yield
linear maps. And since the zero map is linear, the set L(V,W ) of all linear maps forms a
vector space. The composition of maps, while not commutative, gives rise to an associative
“multiplication” that turns L(V, V ) into a structure called an algebra.1

So linear maps are determined by where they send the basis of V , and each v ∈ V
(respectively, each w := T (v) ∈ W ) can be represented by a list of n (resp. m) coordinates.
It therefore suffices, to completely characterize T , to record the m coordinates of each of the n
vectors T (vi) produced by feeding the basis of V into T . These mn scalars are conventionally
collected into an array of numbers called a matrix, where each of n columns contains the
m coordinates of the T (vi). Notice that while T maps n dimensions into m, the matrix
describing it is of size m× n.

1In quantum mechanics, the composition AB of linear maps A and B can be used to define the commutator
[A,B] := AB −BA. This is an example of a Lie bracket on the algebra of observables.
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2.2 Kernel, Image, and Isomorphism 2 LINEAR TRANSFORMATIONS

2.2 Kernel, Image, and Isomorphism

Linear maps may be defective: they may send all of V into a proper subspace of W , or they
may send two vectors in V to the same w ∈ W . In the first case, not all w ∈ W come
from some v ∈ V , and T is not surjective; in the second case, some w may not come from a
unique v, and T is not injective. We can actually quantify these defects:

Definition 2.4. The kernel of T is the subset of V of vectors that T sends to 0 ∈ W . The
image of T is the subset of W “covered” by T , i.e. all vectors of the form T (v) ∈ W :

kerT := {v ∈ V | Tv = 0}; imT := {w ∈ W | w = Tv, v ∈ V }. (2.3)

It follows (check it!) that kerT is a subspace of V , while imT is a subspace of W .

The image of T is an intuitively clear description of surjectivity: if imT 6= W , then T
does not cover W and thus fails to be surjective. Conversely, if T is not surjective, then
clearly imT 6= W . Meanwhile, the kernel of T tells us how much of V is collapsed into 0
by T . If kerT is more than just {0}, then T has sent some v 6= 0 to 0 ∈ W and fails to be
injective. Conversely, if T is not injective, then T (u) = T (v) for some u 6= v ∈ V . Hence
T (u − v) = 0 = T (0), which puts u − v 6= 0 inside kerT , so kerT 6= {0}. Thus we have
proven that imT = W iff T surjects, while kerT = {0} iff T injects.

Now every v ∈ V is either killed by T or survives (either v ∈ kerT or T (v) ∈ imT ), so
the sizes of kerT and imT should add up to the size of V . Let β complete a basis of kerT to
a basis of V , and send this basis through T . The first dim(kerT ) vectors will be dead upon
arrival in W , while the remaining ones form a basis for imT . Thus we have proven the

Theorem 2.5 (Rank-Nullity). dim(imT ) + dim(kerT ) = dimV .

Linear maps with no defects, which have trivial kernel and map onto their entire target
space, serve as faithful and complete dictionaries between vector spaces. They are therefore
reversible, meaning that a unique map T−1 undoes everything that T does to a vector.

Definition 2.6. An isomorphism T : V → W is a bijective (injective and surjective) linear
map. If such a map exists, we write V ∼= W and say that the spaces V andW are isomorphic.2

Definition 2.7. The inverse of a linear map T : V → W , if it exists, is a linear map
T−1 : W → V such that T−1 ◦ T = idV and T ◦ T−1 = idW .

Theorem 2.8 (Inverses). A linear map T : V → W is an isomorphism. Equivalently:
(1) T has a unique inverse T−1, which is then also an isomorphism;
(2a) kerT = {0} ⇐⇒ dim(kerT ) = 0 ⇐⇒ T is injective;
(2b) imT = W ⇐⇒ dim(imT ) = n ⇐⇒ T is surjective;
(3) n := dimV = dimW =: m.

2There is actually a way to “force” every linear map T : V → W to become an isomorphism. Since T
surjects onto its image, the map T : V → imT ⊂ W is surjective. To make T injective, we declare all
v ∈ V which T maps to the same w ∈ W to be equivalent. This “squashes” each non-injectivity (called
a fiber) of T into a single point. The set of these equivalence classes of vectors is called the quotient space

Ṽ = V/ kerT . The new map T̃ : Ṽ → W̃ is an isomorphism by construction, albeit between different spaces.
This construction is native to group theory, where it is known as the First Isomorphism Theorem.
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2.3 A Change of Perspective 2 LINEAR TRANSFORMATIONS

In practice, an isomorphism is constructed by choosing bases {vi} for V and {wi} for
W , and then mapping one basis to another: T (vi) = wi. This makes it clear that vector
spaces of different dimensions cannot be isomorphic—T would either squash a basis into
dependence in W , or else be unable to fill out a basis for W . In fact, we’ve already seen
this in action: we represent a vector by its coordinates by mapping the basis {vi} of V to
the standard basis {ei} of F n. Moreover, the discussion of matrices above yields another
isomorphism that we now have the language to give:

Theorem 2.9 (Canonical isomorphisms). Every vector space of dimension n is isomorphic
to F n, and every linear map between V ∼= F n and W ∼= Fm is determined by the matrix
A ∈Mm×n whose columns are the coordinates of T (vi). Moreover, L(V,W ) ∼=Mm×n.

2.3 A Change of Perspective

We mentioned that the coordinates of a vector were arbitrary and dependent on a choice of
basis. When the basis is changed, the vector’s coordinates change; so too do the entries of
a matrix, if the bases of the spaces it maps between are changed. Nevertheless, the objects
themselves remain the same; hence we examine changes of basis in light of this invariance.

Let β := {v1, ...,vn} and β′ := {v′1, ...,v′n} be two different bases for V , and similarly let
γ := {wi} and γ′ := {w′i} be bases for W . Let x ∈ V be arbitrary. We can decompose it
along either basis: x =

∑n
i=1 civi =

∑n
j=1 c

′
jv
′
j. How are the c′j related to the ci? The trick

is to decompose each vi ∈ β along β′. If vi has (primed) coordinates (bi)j := bij ∈ F , then

vi =
n∑
j=1

bijv
′
j =⇒ x =

n∑
i=1

civi =
n∑
i=1

ci

 n∑
j=1

bijv
′
j

 =
n∑
i=1

n∑
j=1

cibijv
′
j =

n∑
j=1

c′jv
′
j. (2.4)

Here bij, the jth primed coordinate of vi, is the “amount” of vi along v′j. We see that

c′j =
n∑
i=1

cibij ⇐⇒ c′ =
n∑
i=1

cibi, c′ = (c′1, ..., c
′
n), bi =

(
(bi)1, ..., (bi)n

)
. (2.5)

This linear change of basis transformation φV : V → V sending β′ 7→ β is invertible (you
can change from β to β′ too!), hence an isomorphism. It acts in coordinates by c′ 7→ c, and
its matrix B has elements vij, so that B−1(c) = c′ performs the change of coordinates β 7→ β′.

Now consider a linear map T : V → W , and suppose that V and W suffer changes of basis
β 7→ β′ and γ 7→ γ′, with change-of-basis maps BV and BW , respectively. We want to know
how the matrix entries of T transform when both β and γ are changed. For definiteness, let
A,A′ be the matrices of T in bases (β, γ) and (β′, γ′), respectively. One might apply T to
a vector v ∈ V , and use BV and BW to decompose v and w = T (vi) in their respective
primed and unprimed bases. But this approach is tedious and uninsightful. Instead, notice
that the following are equivalent: (1) first apply A to β, then change basis γ 7→ γ′; (2) first
change basis β 7→ β′, then apply A′. In other words, the diagram below commutes:
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3 TWO EXTRA TOPICS

V (β) W (γ)

V (β′) W (γ′)

A

B−1
V B−1

W

A′

(2.6)

The diagram shows that A′ = B−1W ABV . That is, applying A′ : β′ 7→ γ′ is the same as first
un-priming V through BV , then applying A : β 7→ γ, and finally priming W using B−1W . In
the case where V = W , T is called a linear operator (also called an endomorphism), and we
recover the identity A′ = B−1AB, where now B is the sole change-of-basis matrix.

Definition 2.10. Two linear operators A,A′ : V → V are called similar or conjugate if they
are related by A′ = B−1AB for some invertible map B : V → V . This means that A and A′

represent the same transformation, but with respect to different bases.

Example 2.11. Alexei Petrovich wants to start a Communist revolution, but can only speak
Russian. He asks his good friend Boris to translate his pamphlets into English. The words
are all different, but the call to arms and the hope for a better future remain impassioned.
The propaganda is distributed, and the Red Army marches on Wall Street: long live the
proletariat. Alexei could have accomplished his goal by seizing the means of production,
violently enforcing global equality, and drafting a Constitution for the New World Order
entirely in Russian before having Boris translate it—but surely the first plan was less work.
Translation to and from Russian are accomplished by Boris’s changes of basis BV and B−1V ,
and worldwide political overhaul is given by A (in English) or alternatively by A′ (in Russian).
See if you can follow the commu(nist/tative) diagram above to track Alexei’s rise to power.

3 Two Extra Topics

Many respectable courses in linear algebra spend a lot of time discussing systems of linear
equations as a real-world application and developing determinants as an invaluable tool.
However, these topics are a bit out of the way; we will treat them only briefly.

3.1 Linear Systems

Recall that vectors and linear maps can be represented by columns and arrays of numbers,
respectively. It turns out that this makes linear algebra the perfect tool for solving large
systems of linear equations. The idea is that any system of m equations in n unknowns,

a11x1 + a12x2 + · · ·+ a1nxn = c1

a21x1 + a22x2 + · · ·+ a2nxn = c2
...

cm1x1 + am2x2 + · · ·+ amnxn = cm,

(3.1)

can be compactly written Ax = c, where A ∈ Mm×n contains the given coefficients aij,
x ∈ F n contains the unknown variables, and c ∈ Fm is a vector of given constants.
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3.2 Determinants 3 TWO EXTRA TOPICS

If c = 0, the system is called homogeneous, and standard procedures called row reduction
and Gaussian elimination can be applied to solve the system; that is, to find a basis for kerA.
Gaussian elimination involves applying “elementary row operations” to A that preserve its
kernel, but put A into a form that makes solving the system much easier. If c 6= 0, we
consider the “augmented system” (A | c)x = 0, where (A | c) ∈Mm×(n+1) is a matrix whose
whose columns are those of A, followed by c. After solving this (homogeneous) system for
x in the usual way, we convert back to the inhomogeneous system by choosing all solutions
to the augmented system with xn+1 = −1, for this equivalently solves Ax = c.

3.2 Determinants

The determinant is an alien from another planet called “multilinear algebra.”
The determinant of an operator is a number that represents the volume of the n-

dimensional parallelepiped formed by the vectors that make up its rows. If the rows are
linearly dependent, the polytope is “squashed” and detT collapses to zero. Geometrically,
detT gives the “scale factor” of the transformation. The existence and uniqueness of such a
function is a hard theorem which we will state, but not prove.

Theorem 3.1 (∃! determinant). There exists a unique function det : L(V, V )→ F , regarded
as a function of the rows a1, ..., an of a matrix A representing some linear map T : V → V ,
satisfying the following properties:

D1: det(a1, ..., c ai, ..., an) = c det(a1, ..., an);
D2: det(a1, ..., ai + bi, ..., an) = det(a1, ..., ai, ..., an) + det(a1, ...,bi, ..., an);
D3: If ai = aj for i 6= j ∈ {1, ..., n}, then det(a1, ..., an) = 0;
D4: det(I) = 1.

D1 and D2 characterize the determinant as multilinear (that is, linear in each argu-
ment separately), D3 says that det is alternating (vanishing whenever it is given identical
arguments), and D4 normalizes det to unity for the identity matrix I. In other words, the
determinant is the unique n-linear, alternating function on operators mapping I to 1.

Proposition 3.2 (Properties of det). Let A,B be square matrices, with rows ai and bj,
representing linear operators T, S on V , respectively. Then:

1. If any row ai = 0, then detA = 0. Consequently, if any two rows of A are linearly
dependent, then detA = 0. Exchanging any two rows of A incurs a sign flip in detA.

2. (a) detAB = (detA)(detB); (b) det cA = cn detA; and (c) detA−1 = 1
detA

.

3. The determinant is also well-defined when taken as a function of the columns of A.

From (2c), a square matrix is invertible (i.e. the map it represents is an isomorphism) iff
detA 6= 0. And from (3), the determinant of the transpose matrix AT , formed by switching
the rows and columns of A, i.e. (AT )ij = Aji, is equal to the determinant of A. Determinants
also end up being very useful for determining the eigenvalues of a matrix: this is the topic
to which we turn next, but we will try to avoid the use of determinants in our discussion.
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4 FINDING AN EIGENBASIS

Part II

Diagonalizable Operators

4 Finding an Eigenbasis

With the basic apparatus of linear algebra in place, we will explore the structure of linear
operators, or maps from a vector space to itself. To start, note that a linear operator
T : V → V usually rotates or shears vectors, throwing them off their span. But some vectors
are resilient: those v ∈ V which T merely scales, leaving their direction unchanged, are called
its eigenvectors (eigen- means “self” in German, indicating that T returns eigenvectors to
their own lines); the associated scaling factor is called an eigenvalue.

Definition 4.1. A nonzero v ∈ V is called an eigenvector of a linear operator T : V → V
with eigenvalue λ ∈ F if T (v) = λv.

Example 4.2. Every vector is an eigenvector of the identity operator I with eigenvalue 1.
Contrariwise, the planar rotation operator R : R2 → R2 has no eigenvectors at all, because its
axis of rotation points out of the plane! In 3 dimensions, however, the axis is an eigenvector,
and in fact rotations in odd-dimensional spaces always have an eigenvector with λ = 1.

A natural question is whether T has enough independent eigenvectors to form a basis for V .

Definition 4.3. A linear operator T : V → V is called diagonalizable if V has a basis, called
a T -eigenbasis, consisting entirely of T -eigenvectors.

Diagonalizable operators are interesting because they carry an “intrinsic” basis β := {vi}
for the space, which is handy for decomposing arbitrary vectors on which they act:

T (v) = T

 n∑
i=1

civi

 =
n∑
i=1

ciT (vi) =
n∑
i=1

ciλivi =⇒ T (v) ∼ (c1λ1, ..., cnλn). (4.1)

After changing to the the eigenbasis, T acts by stretching each (basis) eigenvector vi by λi.
You can check that the matrix of T in its eigenbasis is diagonal : every entry is zero except
for those along the main diagonal, and moreover aii = λi.

Theorem 4.4. A linear operator T : V → V is diagonalizable if and only if its matrix A is
similar to the diagonal matrix D := diag(λ1, ..., λn); that is, iff A = B−1DB, where B is the
matrix of a change into the eigenbasis of T .

Example 4.5. Consider a system of coupled oscillators, i.e. point masses attached to each
other by springs. The system of differential equations governing their motion may be written
down as a matrix (see §3.1) whose entries give the couplings between the different masses.
Diagonalizing this matrix decouples the equations of motion. The eigenvectors are called
normal modes, and they describe different regimes of oscillations; meanwhile, the eigenvalues
give the frequencies of oscillation in each normal mode.
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4 FINDING AN EIGENBASIS

We now take up two central questions: (1) how do diagonalizable operators behave?, and
(2) what kinds of operators are diagonalizable? The second question is more difficult and
will culminate in the Spectral Theorem, so we’ll focus on the first for now. Let T : V → V
be a diagonalizable operator with eigenbasis β := {v1, ...,vn} and corresponding eigenvalues
λ1, ..., λn. Our first step will be to consider the λi. This yields a surprising result:

Proposition 4.6. T -eigenvectors v1, ...,vk with distinct eigenvalues are independent.

Proof. Consider the case of two vectors: if T (v1) = λ1v1 and T (v2) = λ2v2 for λ1 6= λ2, then
T stretches v1 and v2 by different factors. This would be impossible if v1 and v2 had been on
the same line, so they must be independent. The general case follows by induction, but the
argument is still geometrical.3 Suppose that only the first j < k eigenvectors v1, ...,vj are
independent, so that vj+1 :=

∑j
i=1 civi lies in their span. Geometrically, vj+1 is the vertex

opposite 0 of a parallelepiped P defined by the ci. When we apply T to P , each side will
stretch differently because the λi are distinct, so the long diagonal vj+1 shears and changes
directions under T . But this contradicts the assumption that vj+1 is an eigenvector! Thus
{v1, ...,vj+1} must be an independent set. We repeat the same argument for each of the
remaining eigenvectors vj+1, ...,vk until we find that all k of them are in fact independent. �

So if T has n distinct eigenvalues, we automatically get an eigenbasis for V , and hence T
is diagonalizable. But what if two different eigenvectors share the same eigenvalue? Nothing
prevents them from remaining independent, but their eigenvalues no longer guarantee this:
we will have to keep track of the eigenvectors by hand.

Definition 4.7. The λ-eigenspace Vλ of T is the set of all the eigenvectors of T with the
same eigenvalue: Vλ := {0} ∪ {v ∈ V | T (v) = λv}.

Each Vλ is a subspace of V , and vectors from different eigenspaces are independent. If T
has n distinct eigenvalues, then each eigenspace is one-dimensional, and we can construct an
eigenbasis for V using one eigenvector from each Vλ. More generally, we can choose a basis
βλ for each Vλ. Their union β = ∪ki=1βλi is guaranteed to be independent, and β forms an
eigenbasis for V as long as it contains enough vectors:

Proposition 4.8. A linear operator T : V → V is diagonalizable iff
∑k

i=1 dimVλi = n.

Example 4.9. In quantum mechanics, the state of a physical system is a vector (ormally, a
ray) in a complex vector space H, and various observables (e.g. position, momentum, spin,
etc.) are represented by diagonalizable4 operators on H. The measurement of an observable
always gives one of its eigenvalues, and the system “collapses” to an eigenvector with the
measured eigenvalue. The set of an operator’s eigenvalues is called its spectrum; the spec-
trum is degenerate if multiple independent eigenvectors share an eigenvalue. In this case
a measurement does not uniquely determine the state to which the system collapses. One
must be content with knowing that the state lies in some (possibly large) eigenspace. Alter-
natively, one can add a perturbation that “lifts the degeneracy” by changing the eigenvalues
so that they become distinct... but that is a story for a different time.

3Credit for this beautiful proof goes to Vedran Sego in this StackExchange post.
4“Diagonalizable” is too broad: the correct term is hermitian, but we haven’t met hermitian operators yet,

and the only substantive difference is that (as we’ll prove!) hermitian operators must have real eigenvalues.
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5 DIRECT-SUM DECOMPOSITION

5 Direct-Sum Decomposition

We know that every v ∈ V can be decomposed along a basis for V : this is a rigid decom-
position of V as the “sum” of its basis directions. We can obtain a looser, more general
decomposition by introducing a diagonalizable operator T , which breaks V into independent
eigenspaces Vλ. Then any v ∈ V can be written as a sum v =

∑n
i=1 wi of suitably chosen

independent eigenvectors, one from each eigenspace. We have a handy word for this:

Definition 5.1. V is the direct sum of subspaces W1 and W2, written V = W1 ⊕W2, if
W1 ∩W2 = {0} and every v ∈ V is uniquely written v = w1 + w2, with w1 ∈ W1, w2 ∈ W2.

The subspaces W act like large, amorphous blobs generalizing the spans of basis vectors.
They also describe our situation: under the action of T , the space decomposes into the
direct sum of its eigenspaces. Even better, T acts on each eigenspace Vλ simply by scaling
the vectors there. Each Vλ is like Las Vegas: vectors in Vλ stay there under the action of T .

Definition 5.2. A subspace W ⊂ V is invariant under T if T (w) ∈ W for all w ∈ W .

Not only are the eigenspaces all T -invariant, but within each Vλ, T acts by T (w) = λw.
We can describe what’s going on more formally in the language of projections.

Definition 5.3. A projection is a linear map P : V → V satisfying P 2 = P .5 Given a
decomposition V = W1 ⊕W2, the projection along W2 onto W1 is defined by first writing v
uniquely as w1 + w2, and then setting P1(v) = w1.

Example 5.4. In the Cartesian plane V = R2, the vector v = (a, b) = ax̂ + bŷ may be
projected along the x and y axes by Px̂(v) = (a, 0) = ax̂ and Pŷ(v) = (0, b) = bŷ.

Example 5.5. In quantum mechanics, projection operators perform measurements. When
a physical observable O on H is measured to have eigenvalue λ, the state of the system is
projected onto the eigenspace Hλ. Having collapsed, the “prepared” state continues to lie
within Hλ, and every subsequent measurement of O will yield λ.

As an exercise, prove that with V = W1⊕W2 as before, im(P1) = W1 and ker(P1) = W2;
moreover, P1 is the identity on W1. Also, show that projections are diagonalizable. Anyway,
we now have a beautiful story to tell. Each diagonalizable T : V → V decomposes V into
a direct sum of k invariant eigenspaces Vλ, and within each it acts by scaling. Therefore T
decomposes into a sum of scaled projection operators: indeed, for any v ∈ V ,

T (v) = T

 k∑
i=1

wi

 =
k∑
i=1

T (wi) =
k∑
i=1

λwi. (5.1)

Theorem 5.6 (Primary Decomposition Theorem). Every diagonalizable T : V → V with
distinct eigenvalues λ1, ..., λk ∈ F yields the decompositions

V =
k⊕
i=1

Vλi , T =
k∑
i=1

λiPi. (5.2)

5A concise, poetic explanation is due to G. Bush: “Fool me twice—you can’t get fooled again!”
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6 GEOMETRY AND STRUCTURE

Part III

The Spectral Theorem
So far, we’ve introduced the basic apparatus of linear algebra and understood how diagonal-
izable operators behave. To actually characterize these operators, we’ll need to describe the
goemetry of vector spaces. After discussing the inner product and norm, we’ll introduce ad-
joints by framing them in the context of linear functionals. Finally, we will conclude with the
celebrated6 Spectral Theorem, which proves that self-adjoint operators are diagonalizable.

6 Geometry and Structure

From now on, we restrict our discussion to real and complex vector spaces, i.e. those whose
field of scalars is either F = R or C. Throughout, the real Euclidean space V = Rn

beautifully illustrates the definitions we introduce.

Definition 6.1. An inner product or symmetric bilinear form on a complex vector space V
is a map 〈·, ·〉 : V × V → F satisfying, for all a, b ∈ F and all u,v ∈ V ,

(a) Linearity: 〈au + bv,w〉 = a〈u,w〉+ b〈v,w〉;
(b) Conjugate-symmetry: 〈u,v〉 = 〈v,u〉;
(c) Positive-definiteness: v 6= 0 =⇒ 〈v,v〉 > 0.

Definition 6.2. The norm ‖v‖ of a vector v ∈ V is given by ‖v‖2 := 〈v,v〉.
The inner product is a natural generalization of the dot product (indeed, the usual prop-

erties of dot products can be derived from the axioms above), and describes the projection
of one vector along another: in fact, the abstract definition of the projection above can be
shown to satisfy Pw(v) = 〈v,w〉w. In other words, inner products tell us how much of one
vector can be described by another: they relate angles between two vectors. Meanwhile, the
norm is the amount of one vector along itself and therefore gives its length.

Definition 6.3. Two vectors u,v ∈ V are said to be orthogonal if 〈u,v〉 = 0.

Orthogonal vectors should be thought of as perpendicular or “completely” independent.
While a basis for V need not be orthogonal, we can always make it so by subtracting the
projection of one basis vector along the others; this removes the components of the other
vectors along the first. This process, called the Gram-Schmidt procedure, can be carried
out inductively until the entire basis is orthogonal, at which point we can normalize it by
rescaling all of the new basis vectors to unit length. We therefore say that

Theorem 6.4. Every finite-dimensional vector space V has an orthonormal basis, i.e. a
basis β := {v1, ...,vn} where 〈vi,vj〉 = δij.

Example 6.5. In quantum mechanics, measuring an observable in some state v ∈ H col-
lapses that state to an eigenvector vλ of O and yields the eigenvalue λ. The probability
of finding λ is controlled by “how close” v is to vλ: P (λ) = |〈v,vλ〉|2. If v = vλ, then
P (λ) =‖v‖2 must be unity; thus we say that “quantum states are normalized.”

6 We do not know who celebrated it, because we were not invited.
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7 LINEAR FUNCTIONALS AND DUALITY

Orthogonality provides another lens through which to understand linear structure. Given
any subspace W ⊂ V , every vector v ∈ V has some components that lie in W and some
that lie outside it. That is, every vector can be written v = w + w⊥, where w lies entirely
in W , while w⊥ is orthogonal to w.

Definition 6.6. The orthogonal complement of a subspace W ⊂ V is the set of vectors
orthogonal to all of W , i.e. W⊥ := {v ∈ V | 〈w,v〉 = 0 for all w ∈ W} ⊂ V .

Orthogonal complements are subspaces, and the decomposition above can be written as
follows:

Proposition 6.7. For any subspace W ⊂ V , V = W ⊕W⊥ and dimV = dimW + dimW⊥.

Example 6.8 (Euclidean space V = Rn). The inner product is the familiar dot product,
and the norm is given by the Pythagorean theorem:

〈u,v〉 = u · v =
n∑
i=1

uivi =‖u‖‖v‖ cos(θ); ‖v‖2 =
n∑
i=1

v2i . (6.1)

Any two vectors at right angles to each other are orthogonal, for instance the usual unit
vectors x̂ := (0, 1) and ŷ := (1, 0) in the plane. Rn has a standard coordinate basis β :=
{ê1, ..., ên}, where êi is the unit vector along the ith Cartesian axis and has components
êi = (0, ..., 0, 1, 0, ..., 0). This is an orthonormal basis, and Rn splits as the direct sum of its
coordinate axes: letting Wi := span(êi), we have Rn =

⊕n
i=1Wi.

7 Linear Functionals and Duality

The notion of an adjoint is often introduced with no motivation and leaves many lost in a
whirlwind of confusion. To remedy this, we will look at vector spaces through the mirror of
duality and exhibit adjoints as the looking-glass versions of linear operators.

Definition 7.1. A linear functional on a vector space V is a linear map φ : V → F , i.e. one
that satisfies φ(au + bv) = aφ(u) + bφ(v).

Linear functionals, also called covectors or one-forms, can be added and scaled just like
the vectors they act on. With the observation that the zero functional is well-defined, we
see that the linear functionals form a vector space:

Definition 7.2. The dual space V ∗ of a vector space V is the set of linear functionals on V .

Why do we now claim that such a construction is important enough to merit a pompous
name? The key lies in the relationship between linear functionals and inner products.

Example 7.3. For V = R3 with the usual inner product, let v = (v1, v2, v3) ∈ V be a vector.
Consider the functional φ(v) = 3v1 + 2v2−4v3, and note that we can write φ(v) as the inner
product of v with the vector of coefficients u = (3, 2,−4): indeed, φ(v) = 〈u,v〉.

13



7 LINEAR FUNCTIONALS AND DUALITY

Notice that φ above is linear because the coordinates vi of its arugment enter linearly
into its definition. This requirement is fundamental, and is the reason that φ looks like half
of an inner product, φ “=” 〈u, ·〉. In fact, every φ looks like this, and there is always some
vector u with coefficients that dot into v to yield the result φ(v) ∈ F .

Theorem 7.4 (Riesz Representation Theorem). For every linear functional φ ∈ V ∗, there
is a unique u ∈ V such that φ(v) = 〈u,v〉 for every v ∈ V . That is, every φ can be uniquely
identified with u, so without loss of generality we may label linear functionals by φ = φu.

The space of linear functionals is dual to the original space in the sense that every
functional “is” the vector whose coefficients define its action on the original space; this is
why we sometimes call linear functionals covectors. More precisely:

Theorem 7.5. Every finite-dimensional vector space V is naturally isomorphic to V ∗, with
the isomorphism Φ: V → V ∗ given by Φ(u) = φu. Moreover, Φ is sesquilinear and isometric:

(a) Φ(au + bv) = aΦ(u) + bΦ(v);
(b) ‖u‖ =

∥∥Φ(u)
∥∥.

Conversely, every isomorphism Φ: V → V ∗ gives rise to to a unique inner product on V .

We may also clarify the structure of V ∗ by specifying a natural dual basis for the space.
After choosing an orthonormal basis for V , each dual basis vector is defined to be the image
under Φ of the corresponding basis vector in V . In this way, each basis functional returns 1
upon eating its progenitor in V , and 0 otherwise.

Proposition 7.6. Given an orthonormal basis β := {v1, ...,vn} for a vector space V , the
dual space V ∗ has a natural basis β∗ := {φ1, ..., φn} defined by φi(vj) = δij.

Example 7.7. For V = Rn, consider the standard basis β := {e1, ..., en}. The dual basis
is given by applying the isomorphism: Φ(ei) = φêi . To visualize this, observe that applying
an arbitrary v ∈ V gives φei(v) = 〈ei,v〉 = vi. That is, φei picks out the ith component of
v, which is consistent with the identification of φei with êi itself, as described above.

Example 7.8. In quantum mechanics, a notational tool invented by Dirac records vectors as
“kets,” v 7→ |v〉 and covectors as “bras,” φu 7→ 〈u|. This “bra-ket” notation is justified by the
one-to-one correspondence between kets and their bras, and can be used in very slick ways.
For example, inner products are written 〈u|v〉, and outer products form linear operators
by brazenly ignoring the rules: the notation |v〉〈u| indicates a linear operator that acts by
T |w〉 = |v〉〈u|w〉. Upon eating the vector |w〉, the operator computes its inner product with
〈u| and then redirects the resulting length in the |v〉 direction.

14



8 THE SPECTRAL THEOREM

8 The Spectral Theorem

Having enshrined linear functionals and inner products as central to the study of vector
spaces, we will use them to motivate the construction of the adjoint.

Given a linear operator T : V → V , consider the expression 〈u, Tv〉. As the composition
of two linear maps, this expression can be exhibited as φ(v) for a linear functional φ ∈ V ∗.
Now every linear functional can be written φ(v) = 〈w,v〉 for some w ∈ V , so we have
〈u, Tv〉 = 〈w,v〉. The operator T seems to have jumped ship from the left-hand side and
melded itself into w, so w must depend on u and should have something to do with T . Let
us therefore define the function T ∗ : V → V by T ∗(u) = w and think of w as the vector
obtained from u by the action of the mysterious function T ∗.

Definition 8.1. Given a linear operator T : V → V , the adjoint of T is the linear operator
T ∗ : V → V defined by 〈u, Tv〉 = 〈T ∗u,v〉.

Verifying that T ∗ is in fact a linear operator on V and that it is unique is not hard, but
takes a bit of computation. The basic idea is that T ∗ ferries us from one side of the inner
product to the other, and therefore in a sense from V to V ∗. Motivation notwithstanding,
adjoints remain strange objects, and several basic properties, verified by quick computations
using inner products, may help to make them seem less alien.

Proposition 8.2. The adjoint T ∗ of an operator T : V → V satisfies the following properties:
(a) T ∗∗ = T and I∗ = I;
(b) (T1 + T2)

∗ = T ∗1 + T ∗2 ;
(c) (cT )∗ = cT ∗;
(d) (TS)∗ = S∗T ∗;
(e) kerT ∗ = (imT )⊥;
(f) The matrix of T ∗ is the conjugate transpose of the matrix of T : T ∗ij = Tji.

8.1 A Zoo of Operators

Up until now, the broad class of all linear maps has sufficed for our purposes. But with the
additional structure imposed by inner products and adjoints, it makes sense to define more
“rigid” operators that respect both of these notions.

Definition 8.3. A linear operator U : V → V is called unitary if it preserves the inner
product, i.e. for all u,v ∈ V , 〈Uu, Uv〉 = 〈u,v〉. One can show that the equivalent
formulation in terms of adjoints is the requirement U∗U = UU∗ = I.

The name “unitary” is usually reserved for complex vector spaces, while for real vector
spaces we call such transformations “orthogonal.” In preserving the inner product, unitary
operators are geometrically rigid: they are isometries (distance-preserving maps), and can
be thought of as rotations of space. In fact, the change-of-basis maps of §2.3 were secretly
unitary, and in this context we speak of the similarity transformation A′ = B−1AB by saying
that A is unitarily diagonalized by B. Unitarity leads to several cool results:
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8.1 A Zoo of Operators 8 THE SPECTRAL THEOREM

Proposition 8.4. Every eigenvalue of a unitary operator U : V → V has unit norm (hence
the name!), and eigenvectors of U corresponding to distinct eigenvaluesare orthogonal.

Proof (Griffiths). Let v ∈ V be an eigenvector of U with eigenvalue λ ∈ C. We then have

〈Uv, Uv〉 = 〈λv, λv〉 = |λ|2‖v‖2 ;

〈Uv, Uv〉 = 〈U∗Uv,v〉 = 〈v,v〉 =‖v‖2 . (8.1)

Therefore |λ|2‖v‖2 =‖v‖2, so |λ|2 = 1; hence λ lies on the unit circle in C.
Next, suppose that u is another U -eigenvector with eigenvalue µ 6= λ. We then have

〈u, Uv〉 = 〈u, λv〉 = λ〈u,v〉;
〈u, Uv〉 = 〈U∗u,v〉 = µ〈u,v〉, (8.2)

where in the last line we have used the fact that U∗ has the same eigenvectors as U and
complex-conjugate eigenvalues to those of U . Therefore λ〈u,v〉 = µ〈u,v〉, and since λ 6= µ
we have 〈u,v〉 = 0, proving that U -eigenvectors with distinct eigenvalues are orthogonal. �

Example 8.5. In quantum mechanics, recall that the probabilities of measurements are
related to the inner product between a vector and the observable’s eigenvectors. Because
these probabilities must sum to unity, quantum states are required to always have unit
norm. Their dynamics in time must therefore be carried out by unitary operators, whose
norm preservation guarantees the conservation of probability.

We now discuss the operators respecting adjoints rather than inner products: while
geometrically these may seem more mysterious, they embody an austere symmetry between
V and V ∗ and to boot are algebraically a bit nicer, as we will see.

Definition 8.6. A linear operator H : V → V is self-adjoint or hermitian if T ∗ = T .7 In
terms of inner products, it is equivalent to require that for all u,v ∈ V , 〈Tu,v〉 = 〈u, Tv〉.

Again there is a menagerie of names: “hermitian” is widely used for self-adjoint operators
on complex vector spaces, while “symmetric” is taken up in the real case. This is because
symmetric matricies satisfy Tij = Tji, i.e. they are symmetric about the diagonal, and equal
their own transposes. In the hermitian case, Tij = Tji. Much like their unitary counterparts,
hermitian operators have simple eigenproperties that make them a joy to study.

Proposition 8.7. Every eigenvalue of a hermitian operator H : V → V is real, and eigen-
vectors of H corresponding to distinct eigenvalues are orthogonal.

Proof (Griffiths). Let v ∈ V be an eigenvector of H with eigenvalue λ ∈ C. We then have

〈v, Hv〉 = 〈u, λv〉 = λ‖v‖2 ;

〈v, Hv〉 = 〈Hv,v〉 = λ‖v‖2 . (8.3)

Therefore λ‖v‖2 = λ‖v‖2, so λ = λ, and so λ is real.

7In infinite-dimensional spaces, there is a subtle distinction between hermitian and self-adjoint operators.

16



8.2 The Stormy Finale 8 THE SPECTRAL THEOREM

Next, suppose that u is another H-eigenvector with eigenvalue µ 6= λ. We then have

〈u, Uv〉 = 〈u, λv〉 = λ〈u,v〉;
〈u, Uv〉 = 〈Uu,v〉 = µ〈u,v〉, (8.4)

where we have used the fact that µ ∈ R. Therefore λ〈u,v〉 = µ〈u,v〉, and since λ 6= µ we
have 〈u,v〉 = 0, proving that H-eigenvectors with distinct eigenvalues are orthogonal. �

Example 8.8. In quantum mechanics, the outcomes of measurements must be real! This
is a strong hint that observables should be represented by hermitian operators. Prove that
this must be the case by recalling that measurements are performed by projection operators,
and that observables must contain information about every possible measurement value.

8.2 The Stormy Finale

Let’s pause to meditate on our place in the universe. We live in a vector space of additive-
scalable objects roamed by linear maps that shear and distort vectors. Maps that carry all
of a space’s linear structure over to another space are isomorphisms that identify the spaces;
other maps fail to be injective or surjective, maiming their images or swelling their kernels.
Both vectors and operators can be expressed in coordinates dependent on a choice of basis,
and change-of-basis maps guide us through the rugged terrain here. (Fortunately, every basis
may be made orthonormal.) Enter eigenvectors, special objects that don’t change direction
under the action of an operator; we’re on the hunt for operators with enough eigenvectors to
form a basis for the space. These diagonalizable operators are complicated: they break the
space into a direct sum of invariant eigenspaces, and they decompose into a sum of scaled
projections. In other words, their action is given by a linear combination of their arguments’
projections onto each eigenspace, weighted by their corresponding eigenvalues. There also
live among us bilinear, symmetric maps called inner products and linear functionals; through
the mirror of duality, they both essentially look like vectors. And from the boiling cauldron
of inner products and the dark cloud of the adjoint, there bubble up and rain down upon us
strange and beautiful operators, both unitary and hermitian.

To this foreboding scene we will add one fact, unproven but true, and thence, amid
lightning and thunder, we will prove our main result.

Fact 8.9. Every operator on a complex vector space has an eigenvector.

This is emphatically false in real vector spaces: a rotation operator in the plane has no
eigenvectors at all. Various proofs of this fact over C are available, some using determinants
and some not. Fundamentally, it holds because C is an algebraically closed field.

But enough—the time has come.
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Theorem 8.10 (Spectral theorem). Every hermitian operator T : V → V on a finite-
dimensional vector space admits an orthonormal basis of T -eigenvectors for V .

Proof. We proceed by induction on n = dimV . The base case n = 0 is vacuous because a
0-dimensional vector space is just a single point. For n = 1, V is a line and is spanned by
any nonzero vector. Since T has an eigenvector v, we have V = span({v}), and u = v

‖v‖ is
an orthonormal basis for V . Next, we assume that the theorem holds for some n = k ∈ N
and set dimV = k + 1. Once again, T has an eigenvector v with eigenvalue λ; consider the
1-dimensional subspace W := span {v} ⊂ V . Since we can always write V = W ⊕W⊥, we
have dimW⊥ = k. (We will eventually use the inductive hypothesis on W⊥.)

Next we show that W⊥ is T -invariant. This is due to hermiticity: for any w ∈ W⊥,

〈v, Tw〉 = 〈Tv,w〉 = λ〈v,w〉 = 0, (8.5)

where we have used that v ∈ W and w ∈ W⊥ to ensure that 〈v,w〉 = 0. We have just
shown that applying T to any w ∈ W⊥ leaves it orthogonal to W ; in other words, the image
T (W⊥) is contained within W⊥, so by definition W⊥ is T -invariant.

We now restrict T to this invariant subspace, observing that T
∣∣
W⊥

: W⊥ → W⊥ is a

hermitian operator on the k-dimensional vector space W⊥. By the inductive hypothesis,
the restricted map admits an orthonormal basis {u1, ...,uk} of T -eigenvectors for W⊥. All
of these eigenvectors are orthogonal to the original eigenvector v whose span we called
W , so define uk+1 := v

‖v‖ to scale it down to unit length. By construction, the set β :=

{u1, ...,uk,uk+1} furnishes an orthonormal basis of T -eigenvectors for W ⊕W⊥ = V . �

A similar but much trickier version of this argument (omitted) demonstrates a more
general fact, which encompasses both unitary and hermitian operators:

Definition 8.11. A linear operator T : V → V is called normal if TT ∗ = T ∗T .

Theorem 8.12. A linear operator T : V → V on a finite-dimensional vector space is uni-
tarily diagonalizable (i.e. V has an orthonormal basis of T -eigenvectors) iff T is normal.
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A TEXTBOOKS AND FURTHER READING

A Textbooks and Further Reading

Linear algebra cannot truly be done justice without a good textbook, a pad of paper, a pencil,
a large eraser, and a wastebasket. Unfortunately linear algebra textbooks that belong in the
wastebasket abound, and only a select few rise to the task of an elegant, thorough, intuitive,
and motivated exposition. One text is not enough; authors differ in opinion about what
should be emphasized. Below are listed a few of the texts I liked:

Paul Halmos, “Finite-Dimensional Vector Spaces.”
This is the linear algebra textbook: it’s concise, beautifully written, and develops the

theory naturally and with an eye towards generalizations to the infinite-dimensional setting,
which today is known as functional analysis. The book packs a punch: it treats topics deeply
and once, rather than making several passes at the same material like modern texts.

Hoffman and Kunze, “Linear Algebra” (Second Edition).
This dry, exhaustive text covers everything and does it correctly. It is a very tough

first introduction to linear algebra, and unapolagetically presents an algebraist’s take on the
subject. Be wary, ye faint of heart. But read and read again; read and weep; read and love.

Sheldon Axler, “Linear Algebra Done Right” (Third Edition).
I am ambivalent on this one. Axler wrote the book out of a nostalgia for elegance and a

hatred for determinants. In my opinion he prodced a decent book riddled with bad notation
that nevertheless treats the theory in some generality. Axler’s writing is lively and written
for the modern audience, but doesn’t entirely achieve his aims.

Sergei Treil, “Linear Algebra Done Wrong.”
Better than “Done Right”, and a deeper book. Although I am not intimately familiar

with this text, it seems to accomplish what Axler tried to, minus the unfriendliness towards
determinants, minus bad notation, but plus some advanced topics and plus less-than-clear
writing in a few places. Overall an excellent introduction.

Barton Zweibach, MIT lecture notes on Quantum Mechanics II, especially Chapter 3.
These lecture notes contain a brief yet surprisingly clear account of many of the topics

covered by the present set of notes. Zweibach follows Axler’s treatment for much of his
linear algebra review, but departs on key points mostly related to physics. As a supplement
to a quantum mechanics course, the emphasis is of course on physical intuition rather than
rigorous proof; while this may annoy some, I admire the additional clarity.

The Internet, in particular Wikipedia and Math Stack Exchange.
The Internet is always here for you. Look things up; explore, and so on. Email me

at davidgrabovsky@physics.ucsb.edu with questions on the typos and unexplained nota-
tional quirks I’ve inevitably missed, or on (mostly) anything else.

19


	I Basic Notions
	Welcome to Vector Space
	The Rules of the Game
	Basis and Dimension

	Linear Transformations
	Definition and Properties
	Kernel, Image, and Isomorphism
	A Change of Perspective

	Two Extra Topics
	Linear Systems
	Determinants


	II Diagonalizable Operators
	Finding an Eigenbasis
	Direct-Sum Decomposition

	III The Spectral Theorem
	Geometry and Structure
	Linear Functionals and Duality
	The Spectral Theorem
	A Zoo of Operators
	The Stormy Finale

	Textbooks and Further Reading


